

1
2
3 We appreciate the thorough and constructive review provided by
4 four expert reviewers **dxAk (R1)**, **SWSi (R2)**, **6XeZ (R3)**, and
5 **BFry (R4)**. We will first address common questions (CQ), followed
6 by responses(R) to questions (Q) from each reviewer. All these
7 responses will be reflected in the final version.

8 **CQ1: Resolution and mask size and shape. (R1.Q2, R3.Q4)** **R:** Good
9 point. Our model has been rigorously tested with mask ratios ranging
10 from 0% to 80%. Although initially trained at 320x320 resolution
11 due to computational limitations, GlobalPaint adapts well to higher
12 resolutions like 320x640 and 640x320, maintaining high performance
13 as shown in Supplementary Material Figure 3 and 4. With more computational resources, GlobalPaint could support larger resolutions.
14 Regarding more mask shapes, we believe that rectangular is more applicable and leave other shapes as future work.

15 **CQ2: Analysis on global feature extraction. (R2.Q3, R4.Q1)** **R:** Good
16 point. We apply all features, including the class token, from the
17 penultimate layer of OpenCLIP instead of only the class token, which
18 enhances spatial detail information modeling throughout the
19 framework. In the following Table, we compare our method with
20 lightweight encoder (Lightweight-Enc) used in M3DDM, which uses
21 Lightweight encoder features as global features. All models were
22 trained for 40k iterations for evaluation due to limited rebuttal
23 time. Results show that while Lightweight-Enc achieves comparable
24 PSNR, SSIM, and LPIPS metrics, the FVD increased by 16.2%
25 to 551.28, showing that our method significantly improves video
26 outpainting quality, especially in motion naturalness.

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVD \downarrow
GlobalPaint	19.05	0.6777	0.1899	474.59
Lightweight-Enc	19.10	0.6762	0.1900	551.28

33 **CQ3: Efficacy Evaluation. (R3.Q2, R4.Q3)** **R:** Good suggestion.
34 We report the trainable model parameters (Par.), computational
35 complexity (FLOPs), inference GPU Memory (I-GPU), and inference
36 time (I-Time) in table below. Our model has fewer parameters and
37 higher inference efficiency. The unique classifier-free guidance
38 design of M3DDM introduces additional computational complexity.

Method	Par.(M)	FLOPs(G)	I-GPU(GB)	I-Time(s)
M3DDM	1299	15667	30	44
GlobalPaint	1024	11177	31	17

43 **R1.Q1 Q3: Real-world applications and generalization to different
44 types of videos.** **R:** We kindly remind the reviewer refer to the video
45 results in the supplementary materials' show.html, including various
46 real-world videos like sports and nature documentaries. Figure
47 1 shows our model successfully outpainting content in an animation
48 video, demonstrating its versatility and practical applicability.

54 **Figure 1: Results of animation video(red box region is input).**

55 **R2.Q2: Two stage model vs one integrated model.** **R:** We streamlined
56 the training process and reduced costs by using a two-stage model.
57 GlobalPaint was trained on 4 A100 GPUs with a batch size of 32

59 for 720k iterations. In contrast, the resource-intensive M3DDM
60 required 24 A100 GPUs and a batch size of 240 for 229k iterations,
61 resulting in a computational cost about 2.4 times higher than ours.

62 **R3.Q1 Q2: Comparison with video inpainting model and Ewarp
63 evaluation metric.** **R:** We compared GlobalPaint's effectiveness with
64 the advanced video inpainting model, ProPainter. Inpainting models
65 may produce blurry pixels when outpainting, potentially raising
66 the PSNR. Unfortunately, due to the unavailable download link for
67 the *Ewarp* metric weight, we cannot access the pretrained weights
68 and wait a response from the author. We plan to include the *Ewarp*
69 metric in the final version if the weights become available and more
70 inpainting model comparisons.

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVD \downarrow
GlobalPaint	20.71	0.7115	0.1685	251.6
ProPainter(2023ICCV)	21.06	0.7065	0.2098	446.59

73 **R3.Q3: Denoising Steps vs. Video Quality.** **R:** The table below shows
74 that as the number of steps increases, LPIPS and FVD decrease,
75 indicating enhanced perceptual video quality and motion naturalness.
76 Conversely, PSNR and SSIM increase at 20 steps due to more
77 image blurriness and less detail, leading to greater pixel averaging.
78 Overall, our default setting 50 steps provide a good balance between
79 video quality and computational cost.

Steps	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVD \downarrow
20	20.91	0.7172	0.1757	269.9
50	20.71	0.7115	0.1685	251.6
100	20.64	0.7089	0.1667	247.3

84 **R4.Q1: The effect of the number of learnable query feature.** **R:** The
85 table below shows that reducing the global tokens to 64 nearly
86 matches the performance of the default 256 tokens, while increasing
87 to 1024 tokens significantly raises the FVD, likely from increased
88 learning difficulty.

Method	G-Num.	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVD \downarrow
GlobalPaint-64	64	19.10	0.6792	0.1906	477.12
GlobalPaint-256	256	19.05	0.6777	0.1899	474.59
GlobalPaint-1024	1024	19.01	0.6753	0.1883	513.14

94 **R4.Q2: Ablation study on window attention.** **R:** The table shows
95 that the 5x5 window (EST-55T) outperformed the 3x3 (EST-33T) in
96 the 40k model results. We haven't explored larger window sizes
97 due to computational constraints but plan to analysis later.

Method	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	FVD \downarrow
EST-55T	18.99	0.6778	0.1902	528.48
EST-33T	18.81	0.6731	0.1928	559.22

98 **R4.Q4: clarify on Confusing Results in the Table 1.** **R:** We learned
99 from the M3DDM authors that their YouTube-VOS dataset is a non-
100 standard version with extra videos, which could lower FVD due
101 to its sensitivity to video count. Metrics like PSNR and SSIM are
102 unaffected by the number of videos. In the final version, we will
103 include complete metrics for Table 2 in the main text.

104 **R4.Q5: Frame rates.** **R:** The GlobalPaint model, trained at 24 fps,
105 handles standard video speeds (24/30 fps) well and adapts effectively
106 to higher fps. This strategy maximizes our limited resources while
107 ensuring model flexibility and effectiveness.